

BUSINESS, ORGANIZATIONS AND SOCIETY (BOSOC)

DOI: http://doi.org/10.26480/bosoc.01.2024.44.51

REVIEW ARTICLE

CODEN: BOSUBO

ADVANCED PROJECT AND LOGISTICS MANAGEMENT ASSESSMENT TITLE: A CHAIN REACTION

Adebayo Ridwana and Yusuf Adeolab

- ^aDepartment of Project Management, Salford Business School, University of Salford, 43 Crescent, Salford, Manchester, UK. ^bDepartment of International Business Management, Royal Docks School of Business and Law, University of East London, East London, UK Corresponding author email: radebayo30@gmail.com
- This is an open access journal distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

ARTICLE DETAILS

Article History:

Received 23 July 2024 Revised 18 August 2024 Accepted 30 September 2024 Available online 02 October 2024

ABSTRACT

Supply chains, the lifeblood of modern corporations, harbor a hidden peril that threatens resilience. In today's interconnected world, uncertainties loom, casting shadows over the stability of supply networks. This study peels back layers within the manufacturing sector, unveiling vulnerabilities that jeopardize supply chain efficacy. It navigates the perilous dance between visible and invisible risks, shedding light on issues often overlooked. Among these risks lies the threat of innocuous buyers encountering substandard goods along the supply chain. The dynamic nature of global networks underscores the need to scrutinize how problems propagate across diverse supply chains, as depicted in the Wall Street Journal documentary "Why Global Supply Chains May Never Be the Same." This study meticulously examines internal and external factors impacting supply chain effectiveness, offering valuable insights for navigating today's complex landscape. Balancing susceptibility and efficiency is paramount in manufacturing, where vulnerabilities lurk despite operational prowess. Through a blend of theoretical frameworks, empirical research, and practical insights, this study enhances supply chain resilience and foresight. It serves as a strategic guide, providing actionable recommendations grounded in credible data. While these recommendations hold promise, potential hazards must be acknowledged. The manufacturing supply chain, efficient yet fragile, demands a preemptive approach to risk management. By offering strategic counsel, this study empowers businesses to fortify their chains against unforeseen disruptions, fostering resilience across dynamic industries. In essence, this research advocates for a balanced and proactive stance towards risk management, revitalizing supply chains to thrive in today's turbulent environment.

KEYWORDS

Dynamic supply chains; Global supply networks; Manufacturing vulnerabilities; Risk management strategies; Supply chain resilience

1. Introduction

There have been worries that as the modern supply network becomes more complex and interconnected, it may lose its resilience. For example, a component of supply chain risk involves the possibility that hazardous materials will be inadvertently fed into the system and unknowingly expose consumers to dangerous products (Minas et al., 2019). Risks which may undermine supply chain responsiveness and efficiency must be identified and eliminated. Supply chain risk, vulnerability, and disruption have now emerged as critical components in any ever-changing environment for effective supply chain management. Such unforeseen disturbances can undermine the supply chain's smoothness adversely. The perspectives from the Wall Street Journal movie, "Why Global Supply Chains May Never Be the Same A WSJ Documentary," as well as additional sources, draw attention to an important issue statement: however, the nature of global supply chains makes it hard for these impacts to be overlooked. The challenge highlights the importance of preventive measures and continuous adjustment, otherwise, it can affect the intactness of the whole supply chain network.

This study aims to examine threats, assess weak points, and propose remedies to resuscitate the manufacturing industry supply chain. It caters for all the risks involved in the entire chain and the consequences thereof if any player fails in the system. Extensive research has been done to

support the recommendations on how to manage and resolve the identified problems that are based on contemporary cases and situations. Besides this, the research also identifies some problems likely to arise during action for these proposed solutions.

The transportation of materials from primary suppliers to ultimate customers is overseen by supply chain management. Any event that could disrupt the planned transfer of resources in the supply chain is considered a risk. These risks may lead to delivery failures, delays, goods damage, or disruptions in smooth operations. However, these initial effects are just the starting point, and the consequences are generally more far-reaching. A shortfall in raw material delivery, for example, can interrupt production, increase work-in-progress stockpiles, force partners to reassess their trading agreements and drive up prices by requiring a shift to alternate modes of transportation, supplies, or operations (Donald, 2007). An interruption to the supply chain might have far-reaching consequences. According to researchers, the announcement of disruption often results in a 7-8% drop in shareholder return on the same day, a 42% drop in operating income, and a 35% drop in return on assets (Hendricks and Singhal, 2003).

The inherent challenge in addressing risks lies in their multifaceted nature, manifesting in diverse forms. Risks can appear at any point in the supply chain, from the first suppliers to the last consumers. They might interfere with the flow of resources or the market for goods, induce abrupt

Quick Response Code Access this article online

Website: www.bosoc.com.my DOI:

10.26480/bosoc.01.2024.44.51

surges or collapses in demand, and vary widely in magnitude from minor delays to natural disasters. The ramifications of these risks can span from brief, only a few minutes long, to enduring and resulting in permanent damage. Moreover, their impact may be localized within a specific segment of the supply chain or transmitted to jeopardize the entirety of the chain.

Within the framework of a supply chain, researchers distinguish between two main types of risk: external risks and internal risks (Donald, 2007). Internal risks are those that arise naturally from day-to-day operations and include things like missed delivery dates, excess inventory, financial uncertainty, erroneous forecasts, small mishaps, human error, and malfunctions in IT systems. These can all be further divided into operational and supply risks. Conversely, external risks originate from sources beyond the supply chain and encompass events such as catastrophes caused by nature, hurricanes and storms labour conflicts, battles, terrorist attacks, outbreaks of disease, changes in prices, issues with commerce partners, shortfalls of raw materials, illicit activity, and anomalies in funding.

A study suggested a classification framework in their research project (Gupta et al., 2021). According to the study, risks related to operations and supply should be categorised as internal risks, and risks related to demand and security should be classified as external risks. With the help of this suggested classification framework, risk management may become more sophisticated and focused by fostering a more nuanced awareness of the complex nature of hazards inside the supply chain.

2. NAVIGATING RISKS AND VULNERABILITIES IN MANUFACTURING SUPPLY CHAINS

2.1 Comprehensive exploration of risks in manufacturing supply chains

Supply chains encounter many obstacles in the modern corporate environment because of growing globalisation and continuous process digitization. Aspects that are both internal to bigger global business settings and external to supply chain networks are included in the intricate web of uncertainty. Supply chain hazards are the collective term for these elements. Researchers define supply chain risk as an organization's or its operations' vulnerability to events with uncertain or unpredictable outcomes (Kirilmaz and Erol, 2017). Through a thorough analysis of the literature and expert consultation, this study investigates the many risks associated with the current business environment. These include risks related to operations and manufacturing processes, demand, behaviour, government and financial, systemic, organisational, and product recovery risks, supply, disruption, environmental and social, cybersecurity, and safety (Shipra et al., 2023). The critical division of these risks into internal and external domains underscores the importance of methodical risk prioritisation and is necessary for the strategic development of risk mitigation strategies (Gupta et al. 2021).

As indicated in 2015 research, these risks involve adverse events, whether expected or unexpected, with negative implications for manufacturing supply chains (Kleindorfer and Saad, 2015). The manufacturing sector, including companies engaged in production, is not immune to the difficulties and hiccups in their supply chain operations. Large-scale interruptions in a manufacturing company's supply chain can have negative consequences that include decreased operational income, increased logistics costs, delays, and a decrease in user interest, among other things (Oluajo, 2021).

It is commonly acknowledged that the manufacturing sector is important to the complex web of the global supply chain. Additionally, the industry adapts to shifts in customer tastes, global regulatory compliance, global market dynamics, and information technology improvements (Mangan et al., 2020). To ensure operational efficacy and efficiency in manufacturing

processes, a robust framework for supply chain risk management must be established.

Many levels of uncertainty, including those about supply, demand, products, manufacturing, and technology, have been studied in a large body of research on supply chain risk (Sreedevi and Saranga, 2017). There are three main ways that supply chains deal with uncertainty: supplier or supply uncertainty, which includes things like supply irregularities and difficulties with timely performance; manufacturing unpredictability resulting from variations in the efficiency of processes, malfunctions of machinery, and different production requirements (quantity, variety, IT, etc.); and the uncertainty surrounding demand, which results from shifts in demand and the inability to predict these shifts (Davis, 1993). Production inefficiencies and inaccuracies in supply and demand forecasts increase because of these supply chain risks (Wiengarten and Longoni, 2018).

The increasing number of actors and their interconnection in supply chains contribute to their complexity and unpredictable nature (Wu and Pagell, 2011). Supply chain risk is a significant environmental factor that compels companies to develop sustainable manufacturing systems, claim Shan et al. (2021). This demonstrates how crucial it is for companies to recognise and adapt to the intricate network of risks present in their supply chain operations.

2.2 Navigating vulnerabilities in manufacturing supply chains

Vulnerability is an outside element that analyzes the impact of certain consequences related to risk. In the present competitive business environment, management of the supply chain is critical for organizations competing globally (Ketchen and Hult 2007). Offshore and outsourcing have also contributed to a more serious incidence of supply chain disruptions (Mudambi and Venzin, 2010). This involves striking between efficiency and sensitivity when navigating global supply networks (Bode and Wagner, 2015). It entails identifying supply chain segments that can easily be disturbed, as well as their ability to affect the smooth flow of operations in the supply chain (Blackhurst et al., 2018).

According to Bode and Wagner, it is characteristic that risk sources/drivers overrun the risk-mitigating ones (Bode and Wagner, 2015). It will result in undesirable results and affect the capability of a supply chain to respond to customer requests. Vulnerability encompasses the capacity and preparedness of the system to face anticipated hazards or consequences in this arrangement. The investigation of factors contributing to supply chain vulnerability has been explored in empirical studies conducted by (Wagner et al., 2012). Simultaneously, (Wagner et al., 2012) delved into the identification of strategies to mitigate supply chain vulnerability.

In the realm of supply chain vulnerabilities, as highlighted by numerous researchers and the insights presented in the WSJ documentary includes

- inadequacies in inventory management,
- suboptimal sourcing strategies,
- · unpredictable pricing,
- disruptions in facilities,
- shortages of truck drivers, and
- transportation challenges

These difficulties all show up as crucial motivators. When combined, these variables represent a serious risk to the manufacturing sector's supply chain's efficiency. The vulnerabilities are displayed in the following figure 1

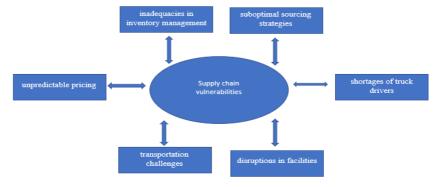


Figure 1: Supply chain disruptions

Researchers posit that vulnerability, conceived as a variable influenced externally, derives from the magnitude of impact or potential damage, ultimately contributing to the determination of risk (Elleuch et al., 2016). According to a study, vulnerability in the setting of the supply chain aims to show how vulnerable it is to disruptive occurrence (Blackhurst et al., 2018). This susceptibility becomes apparent when an exogenous factor, such as a value movement, introduces flexibility and influences the delay in product delivery or perturbs information-sharing processes (Babich, 2006). Furthermore, vulnerability extends beyond tangible assets and should include intangible assets such as infrastructure, software, hardware, and partnerships between companies; additionally, it should consider environmental aspects such as social, political, and technological ones (Pourhejazy et al., 2017).

The central claim of the argument is that vulnerability can be viewed as an outside factor that influences risk. The focus is on the ways that vulnerability, particularly in the supply chain, appears in reaction to external circumstances and affects the timeliness of product delivery, flexibility, and different types of tangible and intangible assets. The incorporation of political, economic, social, and technological components underscores the complex character of susceptibility in the wider corporate landscape.

2.3 Supply chain disruptions in the general business

As posited by reseachers, contemporary challenges confronted by supply chain managers encompass the imperative to construct a supply chain network characterized by effectiveness, efficiency, and resilience to effectively address disruptions (Fahimnia et al., 2015). Simultaneously, the network must adhere to principles of sustainability. There are several potential causes of these disturbances, including natural events like earthquakes, tsunamis, adverse weather conditions, or human-induced activities (Amindoust, 2018). Consequently, the authors highlight that supply chain entities often deviate from their sustainability objectives when contending with unforeseen disruptions (Mari et al., 2014).

Explicit illustrations of disruptions in supply chains was provided by (Sheffi, 2006). In the wake of the terrorist attacks of 9/11, the U.S. government enforced the closure of the Canadian and Mexican borders, leading to intermittent production for Chrysler and Ford. In contrast, Toyota's supply chain demonstrated greater resilience due to redundancy in multiple suppliers and stocks. Toyota successfully ensured a higher

level of "continuity" in response to the terrorist event and, notably, in response to the U.S. government's overreaction. Additional instances of external risks leading to disruptions in supply chains include events like strikes and the bankruptcy of suppliers, or the rapid recall of previously distributed products. Examples of swift product recalls encompass incidents such as (1) the Mad Cow Disease outbreak in 1996; (2) elevated levels of Dioxin in Coca-Cola drinks in Belgium (May 1997); (3) heightened Dioxin levels in Belgium Poultry (July 1999); (4) the presence of diethylene glycol in Colgate toothpaste (July 2007); and (5) the contamination of Mattel toys with lead (August 2007) (Francesco and Tuncer, 2008).

Researchers acknowledge the escalating prevalence of disturbances in supply chains across companies (Sureeyatanapas et al., 2020). The onset of the global pandemic compelled supply chains to undergo significant adaptations to navigate this novel and restrictive environment, resulting in a widespread shortage of essential products and goods (Zhu et al., 2020). This unprecedented event shifted a paradigm in supply chain management, forcing organizations to revise and prepare to change supply processes due to the potential occurrence of similar situations. Some scholars suggest carrying out supply chain mapping systematically to anticipate and be ready against supply-side disruptions (Sheffi, 2020).

The hazard that interruptions provide is a critical factor in modern supply chain management

(Levary, 2008). Specifically, the possible relationship between disruption risk and supplier selection is particularly disturbing and decision-makers should avoid assuming that all necessary information will be readily available and that they have a complete understanding of all factors (Sureeyatanapas et al., 2020). Disruptive events characterized by low likelihood and high intensity introduce uncertainties in the supply chain system. The underestimation of the probability might even be hazardous compared to its opposite scenario of overestimation although it is difficult to precisely ascertain possible disruptions viability (Lim et al., 2013; Mari et al., 2014).

Hence, using a multi-objective goal-planning method becomes necessary to effectively tackle the cost implications of interruptions within the supply chain (Mari et al., 2014). This strategy approach aims at providing a complete infrastructure for dealing with interruption costs, supply chain costs, and any other issues related to them.

2.4 The supply chain's resilience

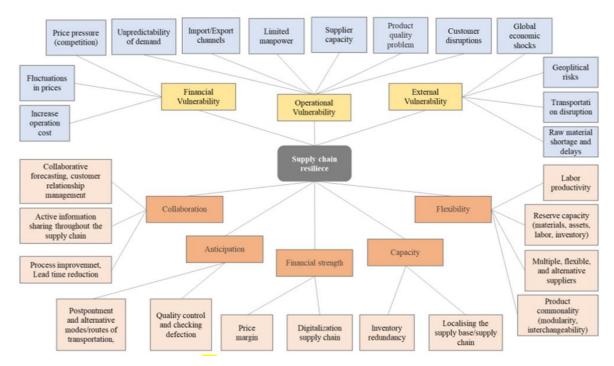


Figure 2: Supply chain resilience framework (Nur Afif et al, 2022)

In supply networks, resilience is more crucial than ever due to variables including market volatility, environmental issues, and intentional interruptions. In this context, resilience is defined by Ali et al., as an organization's ability to respond both proactively and reactively to sudden changes in the external environment (Ali et al., 2017). Deep learnings were drawn from the start of a large-scale study on supply chain resilience in

the UK, which was spurred by the foot-and-mouth disease outbreak in early 2001 and the transportation delays in 2000. The vulnerability of the supply chain is a significant corporate risk, according to 2003 Cranfield School of Management research. Despite this, there is a known need for a strategy to handle such vulnerabilities, but there is a lack of information and inadequate research in this area.

Expanding on this empirical base, it was presented a basic model for a robust supply chain (Christopher and Peck, 2004). To create a resilient supply chain, the authors outlined four key concepts: (1) creating a culture of risk management; (2) promoting high levels of collaboration to identify and manage risks; (3) emphasising agility for quick responses to unforeseen events; and (4) incorporating resilience into the system ahead of disruptions. According to researchers, secondary variables included attributes including visibility, speed, agility, redundancy, availability, efficiency, and adaptability (Pettit et al., 2010).

It is essential to get ready for any future supply chain disruptions because of how frequently they occur (Pettit et al., 2019). Ready companies can react quickly, strengthening their resilience to shocks and decreasing their susceptibility (Scholten, 2014). A study defines resilience as an organization's or supply network's ability to withstand shocks from calamitous events and adjust to evolving conditions (Brunset and Teller, 2017). The functioning and survival of a firm depend on this ability. However, if the flow of goods or information is stopped, suitable action must be taken swiftly to avoid losses due to the inherent unpredictability of all risks and consequences (Kamalahmadi and Parast, 2017). Consequently, companies need to have adaptive capacities for effectively handling disasters through both proactive and reactive actions to maintain competitiveness and minimise repercussions (Giunipero, 2015).

The primary contention of this discourse is that considering the variety of challenges that disruptions provide to supply chains and businesses, resilience must be acknowledged as a strategic necessity. Proactive management of the intricate web of risks and uncertainties that characterises modern business environments is also necessary. According to researchers, as the image below illustrates, researchers conducted a thorough focus group discussion about the vulnerabilities and validation processes included in supply chain resilience frameworks (Syahri Nur Afif et al., 2022).

2.5 Theoretical foundation and conceptual framework development

It was claimed, that because of the fierce competition and quick advancements in technology in today's business world, companies are more exposed to risks in their supply chains, both internal and external (Lavastre et al., 2014). Furthermore, companies currently take part in integrated supply chains that show notable levels of interdependency, as stated by (Tang, 2006; Leat and Revoredo-Giha, 2013). Due of this intricate web of relationships, businesses are exposed to risks arising from both their own operational processes and those of their collaborative partners.

Chain participants must strategically use complementary resources to control risk (Yip and Cheng, 2012; Zhang and Cao, 2010). A wide range of tasks, such as goal congruence, incentive alignment, collaborative communication, information sharing, and decision coordination, are included in these resources (Cao et al., 2010). Several resources, each with

distinct qualities, are the foundation of supply chain collaboration, as stated by (Cao et al., 2010). Improving risk management practices amongst supply chain partners heavily depends on the importance of supply chain collaboration, which is defined by features like sharing, decision synchronisation, resource distribution, collaborative interaction, congruence of objectives, and incentive alignment. This phenomenon leads to a discernible enhancement in the firm's overall performance, as per the findings of study by (Yip and Cheng, 2012).

Building enduring cooperative relationships enhances organisational performance by successfully lowering risk, claim (Chen and Sohal, 2013). This is achieved by the application of a rigorous methodology that comprises identifying potential risk sources, developing backup plans, and keeping an eye on changes among chain participants (Wieland, 2013). According to Zhang and Cao, there can be significant cost savings and avoidance of needless efforts when there are collaborative dynamics involved in inter-firm cooperation (Zhang and Cao, 2010). It was claimed in as study that by encouraging operational improvements and eliminating duplication of effort, this strategic partnership increases profitability and improves the competitive edge (Zhang and Cao, 2010). The case study presented here illustrates the many benefits of ongoing collaboration in risk management and operational effectiveness inside organisational frameworks.

The conceptual framework presented by researchers is founded on the Relational View (RV) and Contingency Theory (CT) (Imran and Khalid, 2016). According to the Contingency Theory, as stated by few researchers, no management problem can be solved by a single management method (Lorsch and Lawrence, 1967; Morgan, 1986). This perspective holds that companies base their strategy decisions on situational elements that are both internal and external. Perceived risks are significant situational or contingency elements in this scenario. Diverse levels of risk perception led to diverse outcomes. On the other hand, the Relational View maintains that resource investments made inside a network—especially in the supply chain-create synergy to successfully handle risks and obtain a competitive advantage (Dyer and Singh, 1998). Within this framework, they proceed to differentiate between four types of relational resources: (1) assets specific to relationships; (2) protocols for exchanging knowledge; (3) complementing resources and abilities; and (4) efficient governance. This integration of relational perspective and contingency theory provides a solid theoretical foundation for researching how firms manage uncertainty and enhance their competitive position in a networked environment through strategic resource investments. A comprehensive survey and experimental investigation of the interactions between different variables can be carried out using the conceptual framework functions that was presented by (Imran and Khalid, 2016). Moreover, this paradigm can be applied to develop relations- and contingency-theoretic hypotheses to assess the moderating impact of cooperation.

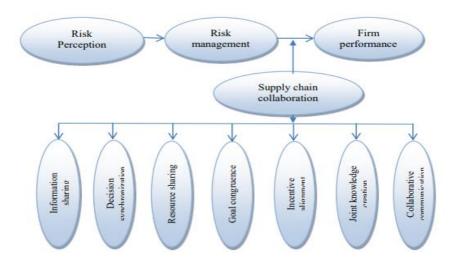


Figure 3: Conceptual framework presented by (Imran and Khalid, 2016)

3. PROPOSED RECOMMENDATIONS TO ALLEVIATE THE IDENTIFIED RISKS WITHIN THE SUPPLY CHAIN.

3.1 Agile six sigma for management of operation risk (internal risks)

Variance-based approaches to risk management, particularly regarding

internal performance measurement and process control, are highlighted in a sizable corpus of supply chain management literature that has been influenced by operations research. Researchers brought to light the realization by several writers of the necessity of addressing uncertainty in company operations strategically (Childerhouse and Towill, 2003). Improving decision-making processes' effectiveness, efficiency, and control is the main objective. The concepts from business process

engineering, statistical process control, and total quality management (TQM) are included in this extensive body of literature. These concepts are most prominently displayed in the modern Six Sigma framework (George 2002).

Six Sigma was initially developed as a methodology for the ongoing improvement of manufacturing processes, but it has now been modified to improve the reliability and effectiveness of transactions and processing in manufacturing organizations (Tennant, 2002). A more modern version, called "Agile Six Sigma," was put forth as a method to methodically lower time-related variability to reduce risk and improve supply chain resilience (Christopher and Rutherford, 2004). This methodology is based on solid statistical data and adheres to the principles of both scientific management and traditional risk management techniques.

In the context of supply chain management, Christopher and Rutherford contend that overall cycle durations can be shortened when dependability rises across a range of activities and processes, improving customer responsiveness and lowering costs. Specifically, they stress how crucial it is to keep redundancy—that is, extra capacity—to mitigate or overcome highly disruptive incidents. Expanding upon the concept proposed by researchers conducted an empirical study to see whether Six Sigma might be applied to the management of materials handling time in the UK defence supply chain (Christopher et al., 2005. His results emphasised the method's positive qualities, especially in terms of making improved supply chain management implementation easier. As a result, by taking this strategy, organisations get one step closer to reducing the uncertainty surrounding prompt delivery to frontline consumers.

3.2 Collaboration, multiple sourcing and reduction of redundancy for management of supply risk (internal risks)

Increasing collaboration with supply chain partners, employing different sourcing techniques, and adding redundant suppliers are some of the most effective ways to reduce risks, according to the 2009 Advanced Market Research (AMR) supply chain risk study results. (Schöenherr and Tummala 2011). Furthermore, supply chain risk management (SCRM)

strategies—particularly flexibility and collaboration—are crucial for reducing supply chain risks (SCRs), according to (Kleindorfer and Saad, 2005). Researchers also highlights the potential of slack resources as useful "shock absorbers" against SCRs (Tang, 2006a). These include increased stockpiles, adaptable product designs, adaptable production procedures, and redundant suppliers.

In contrast, it was emphasise that using a variety of sources, collaborate with others, share knowledge, and maintain safety supplies are all necessary to reduce risk exposure (Lavastre et al., 2012). According to a study in 2013, safety stocks, adaptable transportation, and diverse sourcing can all help reduce SCRs (Wieland, 2013). Finally, researchers advocate for comprehensive risk prevention strategies that include refining supply chains to include buffers or redundancies, enhancing partner participation (including risk sharing), and boosting supply, demand, and process flexibility (Sodhi et al., 2012).

3.3 Mitigating uncertainties: strategies for effectively managing demand risks ((external risks) in the supply chain

In the context of worldwide production networks, which are characterised by situations of both excess and scarcity, the supply chain is faced with complex problems regarding product availability. This means that managing demand risks requires collaborative decision-making that considers strategic components like pricing and capacity, making demand planning crucial. The primary objective of demand planning, which also searches for methods to reduce expenses and boost profitability, is to effectively meet customer requests in this complex situation.

To successfully complete this difficult task, two crucial components that must be carefully considered are accurate demand forecasts and effective inventory management. Accurate demand forecasting is essential for manufacturing decision-making, including capital expansion, technology migration, and capacity planning (Chien et al., 2022). For highly variable commodities, establishing an adequate back-end supply is essential to meeting client demands promptly and enhancing service quality (Lee et al., 2006).

3.4 Strategies for effectively managing security risks in the supply chain

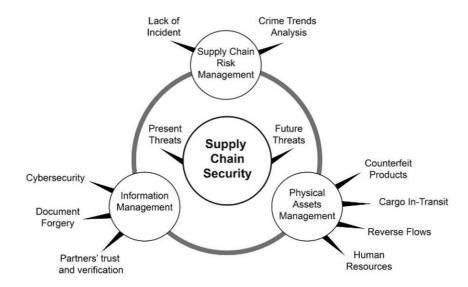


Figure 4: Summary of results clustered in the theoretical framework (Luca and Juha, 2017)

Supply networks are constantly at risk from rioting, vandalism, sabotage, and maritime piracy, which calls for a more thorough security strategy than only dealing with cargo theft (Urciuoli et al., 2014). Solutions must involve a wide range of illicit activities, such as money laundering, counterfeiting, and smuggling, to reduce these security risks. Supply chain risk management, information management, and physical asset management are the three main strategic management domains that companies seeking to improve security risk management must focus on (Luca and Juha, 2017). It was stated in 2009 that these strategies serve as the cornerstone for enhancing overall security risk resistance (Asbjørnslett, 2009). The primary objectives of supply chain risk management are the detection, assessment, and mitigation of security threats. The administration of tangible assets is closely related to this role. Given that goods circulating via supply chains are frequently targeted by thieves, effective asset management is essential.

Experts support a methodical strategy that includes the identification and mitigation of diverse security concerns, acknowledging the growing importance of cybersecurity. This strategy should include safe certification and verification of individuals, organisations, papers, and data along the supply chain (Fossi et al., 2011). The safety of goods, vehicles, and people during transportation, logistical handovers, and other processes is a crucial component of efficient supply chain security. Additionally, supply chain managers must proactively assess and secure services from companies with robust security measures.

As outlined in the provided framework by Luca and Juha, a research study was conducted. The figure below encapsulates the findings of this investigation. The examination of supply chain security delves into existing and anticipated threats. The discerned gaps are categorized into three primary pillars, signifying strategies aimed at enhancing performance and minimizing the vulnerability of supply chains.

4. SET OF RISKS ASSOCIATED WITH THE RECOMMENDATIONS

The goal of the agile Six Sigma strategy is to maximise operational effectiveness and risk awareness by combining the fundamental concepts of Six Sigma with flexibility. Nevertheless, it's critical to be aware of any potential risks and downsides related to this integration. It takes careful balancing for these two enhancement paradigms to coexist. Excessively simplified methods that closely follow the Lean Six Sigma paradigm might make it more difficult to adjust to shifting market conditions and have a detrimental effect on value creation. Similarly, obsessing about variance reduction beyond customer requirements when pursuing Six Sigma concepts may result in energy waste. On the other hand, an excessive emphasis on adaptability may be detrimental to the company, particularly when it comes to the extra costs related to risk reduction (Alipour et al., 2018).

In the event of an interruption, collaboration in the supply chain raises the possibility of an over-reliance on one another, which could leave a partner vulnerable. To lessen this dependence, careful partner selection is stressed (Tucker et al., 2019). While using multiple suppliers reduces the risk of depending too much on one, it also presents difficulties in terms of maintaining consistent product quality and managing supplier relationships well. In the context of diversified sourcing, strong supplier management methods are essential (Knowledge Centre, 2023). Reducing redundancy in the supply chain could weaken its resilience and increase its susceptibility to interruptions. Strategic redundancy is advocated as a

buffer against disruptive events, emphasizing the importance of a balanced approach (National Counter-Intelligence and Security Centre, 2022).

Precise demand forecasting is essential, but the risk lies in forecasting errors, potentially leading to suboptimal inventory levels. Inaccuracies in demand forecasting contribute to manufacturing inefficiencies (Heckmann et al., 2015). Supply chain risk management, information management, and physical asset strategies carry risks such as potential cybersecurity threats from increased information sharing and challenges in managing physical assets efficiently. Information security and asset management are two comprehensive strategies that are advised to reduce vulnerabilities (CIPS, 2023).

In conclusion, even though these supply risk management techniques work, each has unique dangers, therefore it is important to take a balanced strategy.

4.1 Risk assessment matix

The risk assessment matrix mentioned above offers an organised and measurable method for comprehending, ranking, and reducing the risks that were found throughout the investigation. By visualising and ranking risks according to their likelihood and impact, this matrix enables us to concentrate on the most important components of the supply chain risks that have been discovered.

Identified Risks	Туре	Impact	Probability%	Risk Scores (Impact x Probability)
Operation Risk	Internal	High (3)	20%	60%
Supply Risk	Internal	High (3)	20%	60%
Demand Risk	External	Moderate (2)	15%	30%
Security Risk	External	High (3)	20%	60%

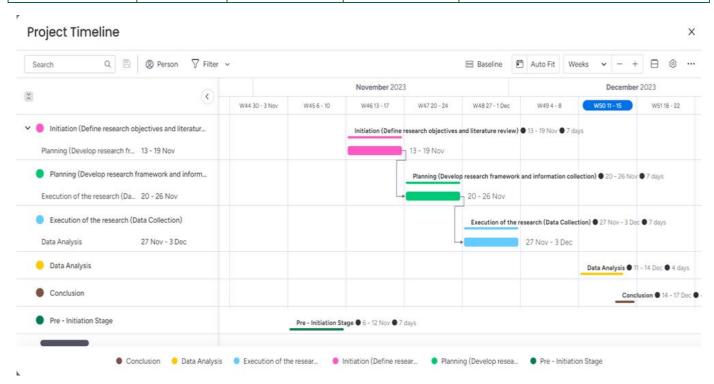


Figure 5: Project plan

5. CONCLUSION

In today's cutthroat economic climate, supply chain risk and vulnerability management has become essential, particularly for manufacturers. It is common knowledge that the first stage in risk management is to recognise vulnerabilities and acknowledge the existence of threats. Supply chain organisations are faced with an inherent challenge because of how readily processes can be affected and how difficult it is to restore them due to the multiple linkages throughout the supply chain. It is more difficult to comprehend supply chain risks because of its complexity. The intricate nature of supply chain risk management is further compounded by the substantial expenses involved in making repairs following losses. Supply chain risk management becomes even more important for businesses in

the present business environment when all these factors are considered. To protect against potential harm and effectively manage the complex network of difficulties presented by interdependent processes, it is critical to identify and address supply chain vulnerabilities.

This paper provides a thorough analysis of the intricate hazards and flaws found in contemporary manufacturing supply networks. The WSJ video illustrates how dynamic global supply chains are, highlighting the necessity of adaptability and proactive risk management. The paper lists some internal and external problems that may significantly affect supply chains' capacity to withstand shocks and operate effectively. For businesses looking to take the initiative in managing the complexities of modern supply chains, this report is a valuable resource. Combining theoretical models, actual research, and useful recommendations, it gives

decision-makers the information and resources they need to improve supply chain resilience, flexibility, and strategic planning in the face of shifting conditions.

REFERENCES

- Ali, A.; Mahfouz, A.; Arisha, A., 2017. Analysing supply chain resilience: Integrating the constructs in a concept. Supply Chain Manag. Int. J., 22, Pp 1–49.
- Alipour, P., Laux, C., Hoffa, D., and Bentley, L., 2018, "Agile Six Sigma A Descriptive Approach", Faculty Publications. Paper 8. https://docs.lib.purdue.edu/cit_articles/8
- Amindoust, A., 2018. A resilient-sustainable based supplier selection model using a hybrid intelligent method. Comput. Ind. Eng.126, Pp. 122–135.
- Anupindi R, and Akella R., 1993. Diversification under supply uncertainty. Manage Sci 39(8), Pp. 944–963
- Babich, V., 2006. Vulnerable options in supply chains: Effects of supplier competition. Nav. Res. Logist., 53, Pp. 656–673.
- Blackhurst, J., Rungtusanatham, J., Scheibe, K., & Ambulkar, S., 2018. Supply chain vulnerability assessment: A network-based visualization and clustering analysis approach. Journal of Purchasing and Supply Management, 24(1), Pp. 21–30.
- Bode, C., and Wagner, M., 2015. Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions. Journal of Operations Management, 36, Pp. 215–228.
- Brusset, X. and Teller, C., 2017. Supply chain capabilities, risks, and resilience. Int. J. Prod. Econ., 184, Pp. 59–68.
- Cao, M, Vonderembse, M, Zhang, Q and Ragu-Nathan, T., 2010, 'Supply chain collaboration', International Journal of Production Research, 48, (21/22), Pp. 6613-6635
- Chapell, A., 2005, An investigation into the applicability of the six-sigma methodology to defence supply chain processes, Cranfield University
- Chen, J and Sohal, A., 2013. Supply chain operational risk mitigation, International Journal of Production Research, 51, (7), Pp. 2186-2199.
- Chien, C. Hsuan, K. Yun–Siang, L., 2022, Smart semiconductor manufacturing for pricing, demand planning, capacity portfolio and cost for sustainable supply chain management, International Journal of Logistics: Research And Applications, Pp. 1-24
- Childerhouse, P. and Towill, D., 2003. Simplified material flow holds the key to supply chain integration, *Omega*,31, Pp. 17–27
- Chopra, S and Sodhi, M., 2004, Managing Risk to Avoid Supply-Chain Breakdown, MIT Sloan Management Review, 46, (1), Pp. 53-61.
- Christopher M, and Lee H., 2001. Supply chain confidence: the key to effective supply chains through improved visibility and reliability. Global Trade Management Pp. 1–10
- Christopher, M., Mena, C., Khan, O., and Yurt, O., 2011, Approaches to managing global sourcing risk, Supply Chain Management: An International Journal, 16, (2), Pp. 67-81.
- Christopher, M., 2018. The mitigation of risk in resilient supply chains, International Transport Forum Discussion Papers, OECD Publishing, Paris.
- Christopher, M. and Peck, H., 2004. Building the Resilient Supply Chain. Int. J. Logist. Manag., 15, Pp. 1–14.
- Christopher, M. and Rutherford, C., 2004. Creating supply chain resilience through agile Six Sigma. Critical Eye, Pp. 24–28.
- CIPS, 2023, Supply Chain Risk Management. Available at: Supply Chain Risk Management CIPS (Accessed: 12/06/2023)
- CSM, 2003. Creating Resilient Supply Chains: A Practical Guide; Centre for Logistics and Supply Chain Management, Cranfield School of Management (CSM): West Yorkshire, UK
- Davis, T., 1993. Effective supply chain management. Sloan Management

- Review 34, Pp. 35.
- Donald, W., 2007, SUPPLY CHAIN RISK MANAGEMENT: Vulnerability and Resilience in Logistics, The Chartered Institute of Transport and Logistics (UK), 7, Pp. 1 276
- Dyer, J. and Singh, H., 1998. The Relational View: Cooperative Strategy and Sources of Interorganizational Competitive Advantage, The Academy of Management Review, 23 (4), Pp. 660-679.
- Elleuch, H.; Dafaoui, E.; Elmhamedi, A.; Chabchoub, H., 2016. Resilience and Vulnerability in Supply Chain: A literature review. IFAC Pap. 49, Pp. 1448–1453.
- Fahimnia, B.; Sarkis, J.; Davarzani, H., 2015, Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ, 162, Pp. 101–114
- Francesc, L. and Tuncer, O., 2008, Supply Chain Vulnerability And Resilience: A State Of The Art Overview, Available at: (PDF) Supply chain vulnerability and resilience: A state of the art overview (researchgate.net) (Accessed: 02/12/23)
- George, M., 2002. Lean Six Sigma: Combining Six Sigma Quality with Lean Speed (McGraw-Hill: New York).
- Giunipero, L., Hohenstein, N., Feisel, E.; Hartmann, E., 2015. Research on the phenomenon of supply chain resilience. Int. J. Phys. Distrib. Logist. Manag., 45, Pp. 90–117
- Gupta, N., Rajesh, R., and Daultani, 2021, Investigation on Supply Chain Vulnerabilities and Risk Management Practices in Indian Manufacturing Industries, *Indian Institute of* Information Technology and Management, 26, Pp. 535 552
- Heckmann, I. Comes, T., and Nickel, S., 2015. A Critical Review on Supply Chain Risk Definition, Measure and Modeling. Omega. 52, Pp 119–132. doi:10.1108/09600031211281411. hdl:10398/9016
- Hendricks, K and Singhal, R., 2003. The effect of supply chain glitches on shareholder wealth, Journal of Operation Management, 21 (5), Pp. 501– 23
- Imran, A. and Khalid, S., 2016., Managing supply chain risks and vulnerabilities through collaboration: Present and future scope, The Journal of Developing Areas, 50, (5), Pp. 335-342
- Kamalahmadi, M and Parast, M., 2017. An assessment of supply chain disruption mitigation strategies. *Int. J. Prod.* Econ., 184, Pp. 210–230.
- Ketchen, D. J., Jr., and Hult, G. T. M., 2007. Bridging organization theory and supply chain management: The case of best value supply chains. *Journal of Operations Management*, 25(2), Pp. 573–580.
- Kleindorfer, R., and Saad, G., 2005. Managing Disruption Risks in Supply Chains. Production and Operations Management 14 (1), Pp. 53–68.
- Knowledge Centre, 2023, Supply Chain Management: Definition and Process, Available at: Supply Chain Management: Definition and Process - Inbound Logistics (Accessed: 12/06/23)
- Lavastre, O., Gunasekaran, A., and Spalanzani, A., 2014. Effect of firm characteristics, supplier relationships and techniques used on Supply Chain Risk Management (SCRM): an empirical investigation on French industrial firms, International Journal of Production Research, 52, (11), Pp. 3381-3403.
- Lavastre, O., Gunasekaran, A. and Spalanzani, A., 2012, Supply Chain Risk Management in French Companies. Decision Support Systems, 52 (4), Pp. 828–838.
- Leat, P & Revoredo-Giha, C., 2013, Risk and resilience in agri-food supply chains: the case of the ASDA PorkLink supply chain in Scotland, Supply Chain Management: An International Journal, 18(2), Pp. 219-231.
- Lee, H., Chung, B., and Kang, H., 2006. Supply Chain Model for the Semiconductor Industry in Consideration of Manufacturing Characteristics. Production Planning & Control, 17 (5), Pp. 518–533.
- Levary, R., 2008. Using the analytic hierarchy process to rank foreign suppliers based on supply risks. Comput. Ind. Eng., 55, Pp. 535–542.
- Lim, M., Bassamboo, A., Chopra, S., Daskin, M., 2013. Facility location

- decisions with random disruptions and imperfect estimation. Manuf. Serv. Oper. Manag., 15, Pp. 239–249.
- Liu, W., Wang, S., Lin, Y., Xie, D., and Zhang, J., 2020. Effect of intelligent logistics policy on shareholder value: evidence from Chinese logistics companies, *Transportation* Research Part E: Logistics and Transportation Review, 137, Pp. 101928
- Lorsch, J. and Lawrence, P., 1967, 'Differentiation and integration in complex organizations', Administrative Science Quarterly, 12, (1), Pp. 1-47.
- Lynch, D., Keller, S., and Ozment, J., 2000. The effects of logistics capabilities and strategy on firm performance, Journal of Business Logistics, 21, (2), Pp. 47
- Mangan, J., Lalwani, C., and Calatayud, A., 2020. Global logistics and supply chain management (fourth ed.). New York: Wiley.
- Mari, S., Lee, Y., Memon, M., 2014. Sustainable and resilient supply chain network design under disruption risks. Sustainability, 6, Pp. 6666– 6686.
- Minas., P., Simpson, N.C., Kao, T.W., 2019. New Measures of Vulnerability Within Supply Networks: A Comparison of Industries. In: Ivanov, D., Dolgui, A., Sokolov, B. (eds) Handbook of Ripple Effects in the Supply Chain. International Series in Operations Research and Management Science, Pp. 276. Springer, Cham. https://doi.org/10.1007/978-3-030-14302-2_11
- Morgan, G., 1986., 'Nature intervenes: organizations as organisms', in Morgan, G (ed), Images of Organization, 1 (1), Sage Publications Ltd., Thousand Oaks, Calif., Pp. 34-66.
- Mudambi, R., and Venzin, M., 2010. The strategic nexus of offshoring and outsourcing decisions. Journal of Management Studies, 47(8), Pp. 1510–1533.
- National Counter-Intelligence and Security Centre, 2022.
- Oluajo, B., 2021. Improving port efficiency: Emerging good practice from Nigeria, Available at: https://www.premiumtimesng.com/business/503230-improving-portefficiency-emerging-good-practice-from-niger ia.html (Accessed: 04/12/23)
- Pettit, T. Croxton, K., and Fiksel, J., 2019. The Evolution of Resilience in Supply Chain Management: A Retrospective on Ensuring Supply Chain Resilience. *J. Bus. Logist.* 40, Pp. 56–65.
- Pettit, T. J., Fiksel, J., and Croxton, K., 2010. Ensuring supply chain resilience: development of a conceptual framework, Journal of Business Logistics, 31, (1), Pp. 1-21
- Ponomarov, S. Y., and Holcomb, C., 2009. Understanding the concept of supply chain resilience, The International Journal of Logistics Management
- Pourhejazy, P., Kwon, O., Chang, Y., Park, H., 2017. Evaluating resiliency of supply chain network: A data envelopment analysis approach. Sustainability, 9, Pp. 255
- Scholten, K.; Scott, S., Fynes, B., 2014. Mitigation processes—Antecedents for building supply chain resilience. Supply Chain Manag, 19, Pp. 211– 228
- Shan, S., Shou, Y., Kang, M., Park, Y., 2021. The effects of socio-technical integration on sustainability practices: a supply chain perspective. Ind. Manage. Data Syst.
- Sheffi, Y. 2001. Supply chain management under the threat of international terrorism. Int J Logist Manag 12(2): Pp. 1–11
- Sheffi, Y., 2020., Are You Prepared to Manage a Whack-A-Mole Recovery? Supply Chain Management Review. Available online: https://medium.com/mitsupplychain/are-you-prepared-to-manage-a-whack-a-mole-recovery-6b79127ad63a (Accessed: 30/11/2023).

- Sheffi, Y., 2006). Resilience reduces risk. The Official Magazine of The Logistics Institute, 12(1), Pp. 13-14.
- Shipra P., Rajesh K. Singh and Angappa G., 2023, Supply chain risks in Industry 4.0 environment: review and analysis framework, Production Planning & Control, 34 (13), Pp. 1275-1302, DOI: 10.1080/0953 7287.2021.2005173
- Sodhi, S., Son, B., and Tang, C., 2012. Researchers' Perspectives on Supply Chain Risk Management. Production and Operations Management, 21 (1), Pp. 1–13.
- Sreedevi, R., Saranga, H., 2017. Uncertainty and supply chain risk: The moderating role of supply chain flexibility in risk mitigation. Int. J. Prod. Econ. 193, Pp. 332–342.
- Sureeyatanapas, P., Waleekhajornlert, N., Arunyanart, S.; Niyamosoth, T., 2020. Resilient supplier selection in electronic components procurement: An integration of evidence theory and rule-based transformation into TOPSIS to tackle uncertain and incomplete information. Symmetry, 12, Pp. 1109.
- Syahri Nur Afif, M., Sumarsono S., Ibrahim, M. Hery S., 2022, Analysis of vulnerability and capability for development of supply chain resilience framework, Journal Industrial Servicess, 8, (2), Pp. 137 150
- Tan, K. C., Lyman, S. B., and Wisner, J. D., 2002. Supply chain management: a strategic perspective. International Journal of Operations & Production Management.
- Tang C., 2006, 'Perspectives in supply chain risk management', *International Journal of Production Economics*, 103 (2), Pp. 451-488.
- Tang, C., 2006a. Perspectives in Supply Chain Risk Management. International Journal of Production Economics, 103 (2), Pp. 451–488
- Tennant, G., 2002. Design for Six Sigma, (Gower: Aldershot)
- Tucker B., Edward B., Arnav D., and Ali, S., 2019, A practical approach to supply-chain risk management, Available at: A practical approach to supply-chain risk management | McKinsey (Accessed: 12/06/2023
- Tummala, R., and T. Schöenherr, 2011. Assessing and Managing Risks Using the Supply Chain Risk Management Process (SCRMP). Supply Chain Management: An International Journal 16 (6), Pp. 474–483.
- Wagner, S.M and Neshat, N., 2012. A comparison of supply chain vulnerability indices for different categories of firms. International Journal of Production Research. 50. Pp. 2877-2891.
- Wieland, A. (2013), 'Selecting the right supply chain based on risks', Journal of Manufacturing Technology Management, 24, (5), Pp. 652-668.
- Wiengarten, F., Longoni, A., 2018. How does uncertainty affect workplace accidents? Exploring the role of information sharing in manufacturing networks. Int. J. Operations Prod. Manage. 38, Pp. 295–310.
- Wu, Z., and Pagell, M., 2011. Balancing priorities: Decision-making in sustainable supply chain management. J. Oper. Manage. 29, Pp. 577–590
- Yip, F. and Cheng, T., 2012, 'Supply risk management via guanxi in the Chinese business context', International Journal of Production Economics, 139 (1), Pp. 3-13.
- Zhang, Q and Cao, M., 2010, Supply chain collaborative advantage, International Journal of Production Economics, 128 (1), Pp. 358-367.
- Zhao, X., Xie, J., and Lau, R. S. M., 2001. Improving the supply chain performance: use of forecasting models versus early order commitments, International Journal of Production Research, 39, 17, Pp. 3923-39
- Zsidisin, G.A., Ragatz. G.L., Melnyk, S.A., 2005 The dark side of supply chain management. Supply Chain Manag Rev 9 (2), Pp. 46–52

